- 1. Let A be a 2×2 nonzero real matrix. Which of the following is true?
	- (A) A has a nonzero eigenvalue.
	- (B) A^2 has at least one positive entry.
	- (C) trace (A^2) is positive.
	- (D) All entries of A^2 cannot be negative.

- 2. Let A be a 3×3 real matrix with zero diagonal entries. If $1 + i$ is an eigenvalue of A , the determinant of A equals
	- (A) 4. (B) −4. (C) 2. (D) −2.

- 3. Let A be an $n \times n$ matrix and let b be an $n \times 1$ vector such that $Ax = b$ has a unique solution. Let A' denote the transpose of A . Then which of the following statements is false?
	- (A) $A'x = 0$ has a unique solution.
	- (B) $A'x = c$ has a unique solution for any non-zero c.
	- (C) $Ax = c$ has a solution for any c.
	- (D) $A^2x = c$ is inconsistent for some vector c.

4. Let A and B be $n \times n$ matrices. Assuming all the inverses exist,

$$
(A^{-1} - B^{-1})^{-1}
$$

equals

- (A) $(I AB^{-1})^{-1}B$.
- (B) $A(B-A)^{-1}B$.
- (C) $B(B-A)^{-1}A$.
- (D) $B(A B)^{-1}A$.
- 5. Let f be a function defined on $(-\pi, \pi)$ as

$$
f(x) = (|\sin x| + |\cos x|) \cdot \sin x.
$$

Then f is differentiable at

- (A) all points.
- (B) all points except at $x = -\pi/2, \pi/2$.
- (C) all points except at $x = 0$.
- (D) all points except at $x = 0, -\pi/2, \pi/2$.
- 6. The equation of the tangent to the curve $y = \sin^2(\pi x^3/6)$ at $x = 1$ is
	- (A) $y = \frac{1}{4} +$ $\sqrt{3}\pi$ $\frac{3\pi}{4}(x-1).$ (B) $y =$ $\sqrt{3}\pi$ $\frac{3\pi}{4}x + \frac{1-\sqrt{3}\pi}{4}$ $\frac{\sqrt{3\pi}}{4}$. (C) $y =$ $\sqrt{3}\pi$ $\frac{3\pi}{4}x - \frac{1-\sqrt{3}\pi}{4}$ $\frac{\sqrt{3\pi}}{4}$. (D) $y = \frac{1}{4}$ – $\sqrt{3}\pi$ $\frac{3\pi}{4}(x-1).$

7. Let f be a function defined from $(0, \infty)$ to R such that

$$
\lim_{x \to \infty} f(x) = 1 \text{ and } f(x+1) = f(x) \text{ for all } x.
$$

Then f is

- (A) continuous and bounded.
- (B) continuous but not necessarily bounded.
- (C) bounded but not necessarily continuous.
- (D) neither necessarily continuous nor necessarily bounded.

- 8. The value of $\lim_{x \to \infty} (\log x)^{1/x}$
	- (A) is e . (B) is 0. (C) is 1. (D) does not exist.

9. The number of real solutions of the equation,

$$
x^7 + 5x^5 + x^3 - 3x^2 + 3x - 7 = 0
$$

is

(A) 5. (B) 7. (C) 3. (D) 1.

10. Let x be a real number. Then

$$
\lim_{m \to \infty} \left(\lim_{n \to \infty} \cos^{2n} \left(m! \pi x \right) \right)
$$

- (A) does not exist for any x.
- (B) exists for all x .
- (C) exists if and only if x is irrational.
- (D) exists if and only if x is rational.
- 11. Let ${a_n}_{n \geq 1}$ be a sequence such that $a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots$. Suppose the subsequence ${a_{2n}}_{n\geq 1}$ is bounded. Then
	- (A) ${a_{2n}}_{n\geq 1}$ is always convergent but ${a_{2n+1}}_{n\geq 1}$ need not be convergent.
	- (B) both ${a_{2n}}_{n\geq 1}$ and ${a_{2n+1}}_{n\geq 1}$ are always convergent and have the same limit.
	- (C) ${a_{3n}}_{n\geq1}$ is not necessarily convergent.
	- (D) both ${a_{2n}}_{n\geq 1}$ and ${a_{2n+1}}_{n\geq 1}$ are always convergent but may have different limits.
- 12. Let ${a_n}_{n \geq 1}$ be a sequence of positive numbers such that $a_{n+1} \leq a_n$ for all *n*, and $\lim_{n \to \infty} a_n = a$. Let $p_n(x)$ be the polynomial

$$
p_n(x) = x^2 + a_n x + 1,
$$

and suppose $p_n(x)$ has no real roots for every n. Let α and β be the roots of the polynomial $p(x) = x^2 + ax + 1$. Then

- (A) $\alpha = \beta$, α and β are not real.
- (B) $\alpha = \beta$, α and β are real.
- (C) $\alpha \neq \beta$, α and β are real.
- (D) $\alpha \neq \beta$, α and β are not real.

- 13. Consider the set of all functions from $\{1, 2, \ldots, m\}$ to $\{1, 2, \ldots, n\}$, where $n > m$. If a function is chosen from this set at random, what is the probability that it will be strictly increasing?
	- (A) $\binom{n}{m}$ $\binom{n}{m}/m^n$. (B) $\binom{n}{m}$ $\binom{m}{m} / n^m$. (C) $\binom{m+n-1}{m} / m^n$. (D) $\binom{m+n-1}{m-1} / n^m$.

- 14. A flag is to be designed with 5 vertical stripes using some or all of the four colours: green, maroon, red and yellow. In how many ways can this be done so that no two adjacent stripes have the same colour?
	- (A) 576. (B) 120. (C) 324. (D) 432.

15. Suppose x_1, \ldots, x_6 are real numbers which satisfy

$$
x_i = \prod_{j \neq i} x_j, \quad \text{for all } i = 1, \dots, 6.
$$

How many choices of (x_1, \ldots, x_6) are possible?

(A) Infinitely many. (B) 2. (C) 3. (D) 1.

16. Suppose X is a random variable with $P(X > x) = 1/x^2$, for all $x > 1$. The variance of $Y = 1/X^2$ is

(A)
$$
1/4
$$
. (B) $1/12$. (C) 1. (D) $1/2$.

17. Let $X \sim N(0, \sigma^2)$, where $\sigma > 0$, and

$$
Y = \begin{cases} -1 & \text{if } X \le -1, \\ X & \text{if } X \in (-1,1), \\ 1 & \text{if } X \ge 1. \end{cases}
$$

Which of the following statements is correct?

- (A) $Var(Y) = Var(X)$.
- (B) $Var(Y) < Var(X)$.
- (C) $Var(Y) > Var(X)$.
- (D) $Var(Y) \geq Var(X)$ if $\sigma \geq 1$, and $Var(Y) < Var(X)$ if $\sigma < 1$.

- 18. If a fair coin is tossed 5 times, what is the probability of obtaining at least 3 consecutive heads?
	- (A) $1/8$. (B) $5/16$. (C) $1/4$. (D) $3/16$.

19. Let X and Y be random variables with mean λ . Define

$$
Z = \begin{cases} \min(X, Y) & \text{with probability } \frac{1}{2}, \\ \max(X, Y) & \text{with probability } \frac{1}{2}. \end{cases}
$$

What is $E(Z)$?

(A)
$$
\lambda
$$
. (B) $4\lambda/3$. (C) λ^2 . (D) $\sqrt{3}\lambda/2$.

20. A finite population has $N(\geq 10)$ units marked $\{U_1,\ldots,U_N\}$. The following sampling scheme was used to obtain a sample s. One unit is selected at random: if this is the *i*-th unit, then the sample is $s =$ $\{U_{i-1}, U_i, U_{i+1}\}\$, provided $i \notin \{1, N\}\$. If $i = 1$ then $s = \{U_1, U_2\}$ and if $i = N$ then $s = \{U_{N-1}, U_N\}$. The probability of selecting U_2 in s is

(A)
$$
\frac{2}{N}
$$
. (B) $\frac{3}{N}$. (C) $\frac{1}{(N-2)} + \frac{2}{N}$. (D) $\frac{3}{(N-2)}$.

21. Suppose X_1, \ldots, X_n are i.i.d. observations from a distribution assuming values -1 , 1 and 0 with probabilities p, p and $1 - 2p$, respectively, where $0 \le p \le \frac{1}{2}$. Define $Z_n = \prod_{i=1}^n X_i$ and $a_n = P(Z_n = 1)$, $b_n = P(Z_n = -1)$, $c_n = P(Z_n = 0)$. Then as $n \to \infty$,

(A)
$$
a_n \to \frac{1}{4}, b_n \to \frac{1}{2}, c_n \to \frac{1}{4}
$$
.

- (B) $a_n \to \frac{1}{3}, b_n \to \frac{1}{3}, c_n \to \frac{1}{3}.$
- (C) $a_n \rightarrow 0, b_n \rightarrow 0, c_n \rightarrow 1.$
- (D) $a_n \rightarrow p, b_n \rightarrow p, c_n \rightarrow 1-2p$.

- 22. Suppose X_1, X_2 and X_3 are i.i.d. positive valued random variables. Define $Y_i = \frac{X_i}{X_1 + X_2}$ $\frac{X_i}{X_1+X_2+X_3}$, $i=1,2,3$. The correlation between Y_1 and Y_3 is
	- (A) 0. (B) $-1/6$. (C) $-1/3$. (D) $-1/2$.

23. Assume (y_i, x_i) satisfies the linear regression model,

$$
y_i = \beta x_i + \epsilon_i, \quad \text{for } i = 1, \dots, n,
$$

where, $\beta \in \mathbb{R}$ is unknown, $\{x_i : 1 \leq i \leq n\}$ are fixed constants and $\{\epsilon_i: 1 \leq i \leq n\}$ are i.i.d. errors with mean zero and variance $\sigma^2 \in$ $(0, \infty)$. Let $\widehat{\beta}$ be the least squares estimate of β and $\widehat{y}_i = \widehat{\beta}x_i$ be the predicted value of y_i . For each $n \geq 1$, define

$$
a_n = \frac{1}{\sigma^2} \sum_{i=1}^n \text{Cov}(y_i, \widehat{y}_i).
$$

Then,

(A)
$$
a_n = 1
$$
. (B) $a_n \in (0, 1)$. (C) $a_n = n$. (D) $a_n = 0$.

- 24. Let X and Y be two random variables with $E(X|Y = y) = y^2$, where Y follows $N(\theta, \theta^2)$, with $\theta \in \mathbb{R}$. Then $E(X)$ equals
	- (A) θ . (B) θ^2 . (C) $2\theta^2$. (D) $\theta + \theta^2$.

- 25. Suppose X is a random variable with finite variance. Define $X_1 = X$, $X_2 = \alpha X_1, X_3 = \alpha X_2, \ldots, X_n = \alpha X_{n-1}$, for $0 < \alpha < 1$. Then $Corr(X_1, X_n)$ is
	- $(A) \alpha^n$. (B) 1. (C) 0. (D) α^{n-1} .

- 26. Let X be a random variable with $P(X = 2) = P(X = -2) = 1/6$ and $P(X = 1) = P(X = -1) = 1/3$. Define $Y = 6X^2 + 3$. Then
	- (A) $Var(X Y) < Var(X)$.
	- (B) $Var(X Y) < Var(X + Y)$.
	- (C) $Var(X + Y) < Var(X)$.
	- (D) $Var(X Y) = Var(X + Y)$.

- 27. Suppose X is a random variable on $\{0, 1, 2, \ldots\}$ with unknown p.m.f. p(x). To test the hypothesis $H_0 : X \sim \text{Poisson}(1/2)$ against H_1 : $p(x) = 2^{-(x+1)}$ for all $x \in \{0, 1, 2, ...\}$, we reject H_0 if $x > 2$. The probability of type-II error for this test is
	- (A) $\frac{1}{4}$. (B) $1 \frac{13}{8}$ $\frac{13}{8}e^{-1/2}$. (C) $1-\frac{3}{2}$ $\frac{3}{2}e^{-1/2}$. (D) $\frac{7}{8}$.

28. Let X be a random variable with

$$
P_{\theta}(X = -1) = \frac{(1 - \theta)}{2}
$$
, $P_{\theta}(X = 0) = \frac{1}{2}$, and $P_{\theta}(X = 1) = \frac{\theta}{2}$

for $0 < \theta < 1$. In a random sample of size 20, the observed frequencies of −1, 0 and 1 are 6, 4 and 10, respectively. The maximum likelihood estimate of θ is

(A)
$$
1/5
$$
. (B) $4/5$. (C) $5/8$. (D) $1/4$.

29. Two judges evaluate *n* individuals, with (R_i, S_i) the ranks assigned to the i -th individual by the two judges. Suppose there are no ties and $S_i = R_i + 1$, for $i = 1, ..., (n - 1)$, and $S_i = 1$ if $R_i = n$. If the Spearman's rank correlation between the two evaluations is 0, what is the value of n ?

(A) 7. (B) 11. (C) 4. (D) 5.

30. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with variance 2. Then for all x ,

$$
\lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^i X_i \le x\right)
$$

equals

(A)
$$
\Phi(x\sqrt{2})
$$
. (B) $\Phi(x/\sqrt{2})$. (C) $\Phi(x)$. (D) $\Phi(2x)$.

